TOBIAS BUCK LEIBNIZ INSTITUT

TOMOGRAPHY ACROSS COSMIC SCALES Reconstructing galaxy properties from multi-band images

In collaboration with Steffen Wolf

LEIBNIZ INSTITUT FÜR ASTROPHYSIK, POTSDAM 23.3.2021 tbuck@aip.de

THE STRUCTURE OF THE NEXT ~40 MINUTES:

- Introduction: Reconstruction across cosmic scales
- A brief history of the Universe
- Galaxy structures in simulations and the Milky Way
- The challenge of reconstructing galaxy properties from observational images

EXAMPLES OF RECONSTRUCTION PROBLEMS IN ASTRONOMY

Stars & Planets Interstellar Medium ~10⁻⁸ pc ~10 pc

Galaxies ~10 000 pc

Universe ~109 pc

INSIGHTS INTO STELLAR INTERIORS VIA ASTROSEISMOLOGY

The vibrations penetrate deep into the star's interior, setting up resonant oscillations at frequencies depending on the star's size, density and rotation.

Astronomers see these oscillations as subtle, rhythmic changes in the star's brightness.

Resonant frequencies can vary from one every few minutes in Sun-like stars to one every few hundred days in red giants.

RECONSTRUCTING INTER-STELLAR GAS STRUCTURES

TOBIAS BUCK

RECONSTRUCTING MAGNETIC FIELD STRUCTURES

TOBIAS BUCK

THE ENERGY CONTENT OF THE UNIVERSE

- Which Cosmology does describe the Universe?
- What is Dark Matter?
- What is Dark Energy?

A BRIEF HISTORY OF THE UNIVERSE

CONSTRAINING DARK ENERGY VIA WEAK LENSING

background galaxies

undistorted background galaxies

foreground galaxy cluster with dark matter

observed distorted galaxies

image credit: Michael Sachs

SINULATIONS **A LIMITED FORWARD MODEL FOR GALAXIES**

A GALAXY FORMATION MODEL IN A NUTSHELL

TOBIAS BUCK

- **General Relativity**
- **Gas Physics**
- Stellar Physics
- **Radiation Physics** \bullet

SIMUALTIONS: THE INPUT PHYSICS

gas cooling	inter- stellar medium	star formation	stellar feedback	super- massive black holes	active galactic nuclei	magnetic fields	radiation fields	cos ra
atomic/ molecular/ metals/ tabulated/ network	effective equation of state/ multi- phase	initial stellar mass function/ probabilistic sampling/ enrichment	kinetic/ thermal/ variety of sources from stars, supernovae	numerical seeding/ growth by accretion prescription/ merging	kinetic/ thermal/ radiative/ quasar mode/ radio mode	ideal MHD/ cleaning schemes/ constrained transport	ray tracing/ Monte Carlo/ moment- based	produ hea aniso diffu strea

most important astrophysical processes

> At the same time: bridging 10⁶ orders of magnitude in spatial scale from sizes of stars to entire galaxies and beyond

Vogelsberger+2020

MOST MECHANISM PUT IN BY HAND IN A PARAMETRISED WAY.

cosmological zoom-in hydro simulations of a Milky Way analogue

SIMULATIONS ARE NUMERICAL EXPERIMENTS!

MODEL PARAMETERS FIXED BY HAND

THEY ARE ONLY A LIMITED FORWARD MODEL FOR **OBSERVED GALAXIES...**

WE WILL NEVER MODEL A CLOSE ANALOGUE TO AN **OBSERVED GALAXY**.

OBSERVATIONS

THE ERA OF LARGE GALAXY SURVEYS

MILKY WAY SURVEYS

Gaia

4MOST

MAIN UAIA PKUUUUI: $\sim 10'$ SIELLAK SPEUIKA

TOBIAS BUCK

SDSS-V

MILKY WAY AS A RESOLVED MODEL GALAXY:

Galactic Genesis

stars per (100 pc)²

- Milky Way's formation history is encoded in its structure
- Stellar properties like age and chemical composition correlate with stellar orbits
- Stellar orbits in turn are set by global properties like gravitational potential (dark matter, gas and stars), size and shape
- > -> Need to understand Milky Way in context

QUANTIFYING MILKY WAY'S SPIRAL STRUCTURE FROM STELLAR SPECTRA

Mass perturbation

Velocity perturbation

QUANTIFYING MILKY WAY'S SPIRAL STRUCTURE FROM STELLAR SPECTRA Model Data

EXTRAGALACTIC SURVEYS

Nancy Roman Space Telescope

European Extremely Large Telescope $\mathbf{P}_{\mathbf{A}} = \mathbf{P}_{\mathbf{A}} =$ ~30 TERABYTES PER NIGHT

TOBIAS BUCK

Vera Rubin Observatory

DESI

Euclid

TOMOGRAPHIC RECON

EXTRACTING GAL

- Can we recons
- Can we build a images?

derive maps of physical parameters

OBSERVATIONS: SPECTROSCOPY VS. PHOTOMETRY

Spectroscopy

Photometry

THE HYBRID APPROACH: INTEGRAL FIELD SPECTROSCOPY

THE HYBRID APPROACH: INTEGRAL FIELD SPECTROSCOPY

single wavelength image

>

オ

image from combined light across all wavelengths

THE TECHNICAL LIMITATIONS . . .

- IFU observations expensive!
 - Iow spatial resolution
 - Relative small sample size: CALIFA: ~300, SAMI: ~1.500, MaNGA: ~10.000 compared to ~10⁶ images

HOW MUCH INFORMATION

CAN WE BUILD AN ANALYSIS TOOL WHICH:

WORKS ON LARGE DATA SETS, LARGE NUMBER OF GALAXIES A. FAST

IS EASY TO HANDLE C. AUTOMATION D. GENERALIZATION

PROOF OF CONCEPT

- of intrinsic properties -> knowledge transfer from IFU surveys
- Which properties can we recover?

- Can we make the model physically interpretable?
- How can we incorporate such models in future pipelines?

Does multi-band photometry contain enough information to recover resolved maps

> What do we learn about galaxies? -> How does the machine reconstructs galaxies?

-> Sampling from latent space to create close analogues to observed galaxies

MULTI-BAND PHOTOMETRY TO PHYSICAL PROPERTIES

SIMILAR APPLICATIONS Output Output

Input

Input

Share a common Architecture: UNet (Ronneberger+2015)

orange → apple

Output

apple \rightarrow orange

WHAT IS DIFFERENT WHEN PREDICTING PHYSICAL PROPERTIES?

- Almost all CNNs are classifiers: $Y \in \{0, 1\}^N$ • Here $Y \in \mathbb{R}^N$ with multiple orders of magnitude
- 1. Predict log(Y)
- 2. Quantized Regression [Güler et al. CVPR 2017]

Bins
$$B = \{-14, -12, ..., 0, 2\}$$

 $quantiles q \in [0, 1]$
 $18|-1$
 $residuals r \in [0, 1]$

$$\int_{0}^{181-2} \int_{1=0}^{181-2} q_{i} \left(B_{i} + r_{i} \left(B_{i+1} - B_{i} \right) \right)$$

PROOF OF CONCEPT: SIMULATED GALAXY IMAGES

g-band

u-band

SDSS MOCK IMAGES 256X256 PIXELS TORREY+2014, **SNYDER+2015** RADIATIVE TRANSFER, BACKGROUND STARS, PSF, NOISE, SURFACE BRIGHTNESS CUT PHYSICAL PROPERTIES ON SAME SCALE

HI abundance

Zgas

Z star

Stellar mass

RESULTS

 \bigcirc

STAR FORMATION RATE MAPS: EXAMPLE FROM 100TH PERCENTILE BEST FIT

STAR FORMATION RATE MAPS: EXAMPLE FROM 70TH PERCENTILE BEST FIT

STAR FORMATION RATE MAPS: EXAMPLE FROM 40TH PERCENTILE BEST FIT

MORE QUANTITATIVE: RADIAL STELLAR PROPERTIES

<pre>pred *</pre>	0.4							
ogN	0.2							
	0.0							
V tru	-0.2							
bo	-0.4							
)	1	2 R/R	nalf	3	2	1

2.5 2.0 1.5 0.5 0.0

MORE QUANTITATIVE: RADIAL GASEOUS PROPERTIES

pred gas	0.4		
Mgc	0.2		
	0.0		
d true gas	-0.2		
Vĝo	-0.4		
	() 1	

2 R/R_{half}

2.5 2.0 1.5 0.5 0.0

SUMMARY: WHAT DO WE LEARN FROM THIS EXERCISE?

- Multi-band Photometry contains enough information to predict galaxy properties on a pixel-by-pixel basis
 - How much information is added by the morphology vs color of the galaxy?
 - Real life application: train on real galaxy images
 - What happens in the limit of large numbers of bands -> IFU data cubes
 - Can we go 3D?

THANKS FOR YOUR

SUMMARY AND CONCLUSION

- simulations: great success in modelling the formation of galaxies
 - can describe statistical properties of galaxies well
 - but limited in describing individual objects
- observations: exquisite data for Milky Way and external galaxies
 - big data challenge in astronomy
 - Need to think about smart methods to process the data

MoFA: Model-based Deep Convolutional Face Autoencoder for Unsupervised Monocular Reconstruction

- ¹Max-Planck-Institute for Informatics ² LCSB, University of Luxembourg

Our model-based deep convolutional face autoencoder enables unsupervised learning of semantic pose, shape, expression, reflectance and lighting parameters. The trained encoder predicts these parameters from a single monocular image, all at once.

Abstract tailed three-dimensional face reconstruction from a single arbitrary in-the-wild image, e.g., downloaded from the Internet, is still an open research problem due to the high degree In this work we propose a novel model-based deep convo-

Ayush Tewari¹ Michael Zollhöfer¹ Hyeongwoo Kim¹ Pablo Garrido¹ Florian Bernard^{1,2} Patrick Pérez³ Christian Theobalt¹ ³Technicolor

THE IDEA: RECONSTRUCTING GALAXY MODELS FROM IMAGES

Input Image(s)

model parameters describing object shape, composition, dynamical state, luminosity, etc. and camera position

idea credit: Bernhard Schölkopf based on face reconstruction by Tewari+2017

