An improved chemical enrichment implementation in GASOLINE2

Tobias Buck tbuck@aip.de Leibniz-Institut für Astrophysik

Potsdam

Jan Rybizki, Aura Obreja, Andrea V. Macciò, Melissa Ness, Sven Buder, **Christoph Pfrommer**

somewhere in cyber space, 19.1.2021

An improved chemical enrichment implementation in GASOLINE2

Tobias Buck tbuck@aip.de Leibniz-Institut für Astrophysik

Potsdam

Jan Rybizki, Aura Obreja, Andrea V. Macciò, Melissa Ness, Sven Buder, **Christoph Pfrommer**

somewhere in cyber space, 19.1.2021

Tracing galaxy formation across time

Tumlinson+2017

N-body Shop Conference

Tracing galaxy formation across time

Tumlinson+2017

Milky Way chemo-dynamics Bimodality in [α /Fe] vs. [Fe/H] plane

N-body Shop Conference

Simulation Physics in Gasoline2

GASOLINE2 smooth particle hydrodynamics

"modern" implementation of hydrodynamics, metal diffusion

Wadsley+2017, Keller+2014

gas cooling

via hydrogen, helium and various metal lines

gas heating

via Photoionisation (e.g. from the UV background)

Shen+2010, Haardt&Madau 2012

Stinson+2006

energetic feedback from young massive stars and supernovae

Stinson+2013

Simulation Physics in Gasoline2

GASOLINE2 smooth particle hydrodynamics

"modern" implementation of hydrodynamics, metal diffusion

Wadsley+2017, Keller+2014

gas cooling

via hydrogen, helium and various metal lines

gas heating

via Photoionisation (e.g. from the UV background)

Shen+2010, Haardt&Madau 2012

Stinson+2006

energetic feedback from young massive stars and supernovae

Stinson+2013

Star particles in cosmological simulations

Star particles in cosmological simulations

Simple stellar population

Simple stellar population

Simple stellar population

N-body Shop Conference

N-body Shop Conference

Chemical composition of mass return nucleosynthetic yield tables for element production inside stars

Yield Table	Masses	Metallicities			
CC SN					
Portinari et al. (1998)	[6, 120]	[0.0004, 0.05]			
François et al. (2004)	$[11,\!40]$	[0.02]			
Chieffi & Limongi (2004)	$[13,\!35]$	$[0,\!0.02]$			
Nomoto et al. (2013)	$[13,\!40]$	[0.001, 0.05]			
Frischknecht et al. (2016)	[15, 40]	[0.00001, 0.0134]			
West & Heger (in prep.)	$[13,\!30]$	$[0,\!0.3]$			
Ritter et al. $(2018b)$	$[12,\!25]$	[0.0001, 0.02]			
Limongi & Chieffi $(2018)^a$	[13, 120]	[0.00			
$\mathrm{SN}_{\mathrm{Ia}}$		17 yield	tal		
Iwamoto et al. (1999)	[1.38]				
Thielemann et al. (2003)	[1.374]	[0.02]			
Seitenzahl et al. (2013)	[1.40]	[0.02]			
AGB					
Karakas (2010)	[1, 6.5]	[0.0001, 0.02]			
Ventura et al. (2013)	$[1,\!6.5]$	$[0.0001,\!0.02]$			
Pignatari et al. (2016)	$[1.65,\!5]$	$[0.01,\!0.02]$			
Karakas & Lugaro (2016)	$[1,\!8]$	$[0.001,\!0.03]$			
$\mathrm{TNG}^{\mathbf{b}}$	[1, 7.5]	$[0.0001,\!0.02]$			
Hypernova					
Nomoto et al. (2013)	[20, 40]	[0.001,0.05] Buck	to k		

N-body Shop Conference

Calculate time release of newly produced elements

Calculate time release of newly produced elements

synthesise look-up tables using chempy (Rybizki+2017)

→ 8 parameters + 3 yield tables

50 bins in Z (1e-5...0.05)100 bins in log(t) (0...13.8 Gyr)

Table 1. Free stellar (SSP) evolution parameters, θ , use Chempy together with the fiducial values adopted in this wor

θ	description	$\overline{ heta}_{ ext{fiducial}}$
IMF type	functional form of IMF	
$lpha_{ m IMF}$	Chabrier high-mass slope	-2.3
	IMF mass range	$0.1 - 100 { m M}$
	CC-SN mass range	$8-40~{ m M}_{\odot}$
	SNIa delay time exponent	1.12
$\log_{10}\left(\mathrm{N_{Ia}}\right)$	normalization of SN Ia rate	-2.9
$\log_{10}\left(au_{\mathrm{Ia}} ight)$	SNIa delay time in Gyr	-1.4
$Z_{ m SSP}$	metallicity of the SSP	$10^{-5}Z_{\odot} - 2Z_{\odot}$

ed rk	in
<u> </u>	_
- - •	
,	
Z_{\odot}	

Differences in element distribution functions

g2.83e10

Differences in [α /Fe] vs. [Fe/H]

A flexibel chemical enrichment implementation* for cosmological simulations

great potential for chemo-dynamics of the MW CGM absorption studies

*I am happy to share the code with the community, drop me a mail or talk to me during the discussions

Simple stellar population model assume mass ranges for CC-SN, AGB stars and SN la