The challenge of simultaneously matching the diversity of chemical abundance patterns in cosmo hydro simulations

Tobias Buck tbuck@aip.de Leibniz-Institut für Astrophysik

Potsdam

Jan Rybizki, Aura Obreja, Andrea V. Macciò, Melissa Ness, Sven Buder, **Christoph Pfrommer, Matthias Steinmetz**

somewhere in cyber space, 24.6.2021

The challenge of simultaneously matching the diversity of chemical abundance patterns in cosmo hydro simulations

Tobias Buck tbuck@aip.de Leibniz-Institut für Astrophysik

Potsdam

Jan Rybizki, Aura Obreja, Andrea V. Macciò, Melissa Ness, Sven Buder, **Christoph Pfrommer, Matthias Steinmetz**

somewhere in cyber space, 24.6.2021

Milky Way chemo-dynamics

Tobias Buck

Spectra with $flag_X_fe = 0$

Buder+2021

see also Grand+2018, Kobayashi+2020, Agertz+2021, Renaud+2021 and Buck2020 for explanation of abundance tracks and of course all the great analytic models!

Galah science meeting

Milky Way chemo-dynamics

Galah -> 30 abundances **Gaia** —> precise kinematics

Tobias Buck

Spectra with $flag_X_fe = 0$

Galah science meeting

+2021

Milky Way chemo-dynamics

Galah -> 30 abundances **Gaia** —> precise kinematics e also What do these patterns tell us about Milky Way's formation history? Citer 1 all the great -0.5-0.5-0.5105933 stars 23761 stars $419523 \mathrm{\ stars}$ 115972 stars157677 stars99570 stars $32340 \mathrm{\ stars}$ 181045 starsanalytic models! -20 -2-2-2-2-2-20 -20 -0 $[\mathrm{Fe}/\mathrm{H}]$ $[\mathrm{Fe}/\mathrm{H}]$ $[\mathrm{Fe}/\mathrm{H}]$ $[\mathrm{Fe}/\mathrm{H}]$

Spectra with $flag_X_fe = 0$

Galah science meeting

+2021

Formation of the bimodality in [α /Fe] vs. [Fe/H] in analytic models

Galah science meeting

Formation of a simulated MW analogue

NIHAO project - NYUAD / MPIA

Formation of a simulated MW analogue

NIHAO project - NYUAD / MPIA

Formation of the bimodality in [α /Fe] vs. [Fe/H]

Tobias Buck

Aim: Modify our cosmological numerical codes to keep up with the data quality and quantity of spectroscopic surveys

Star particles in cosmological simulations

Star particles in cosmological simulations

Simple stellar population

Simple stellar population

Simple stellar population

Galah science meeting

Chemical composition of mass return nucleosynthetic yield tables for element production inside stars

Yield Table	Masses	Metallicities			
CC SN					
Portinari et al. (1998)	[6, 120]	[0.0004, 0.05]			
François et al. (2004)	$[11,\!40]$	[0.02]			
Chieffi & Limongi (2004)	$[13,\!35]$	$[0,\!0.02]$			
Nomoto et al. (2013)	$[13,\!40]$	$[0.001,\!0.05]$			
Frischknecht et al. (2016)	$[15,\!40]$	$\left[0.00001,\!0.0134 ight]$			
West & Heger (in prep.)	$[13,\!30]$	$[0,\!0.3]$			
Ritter et al. $(2018b)$	[12, 25]	[0.0001, 0.02]			
Limongi & Chieffi $(2018)^a$	[13, 120]	[0.00			
SN _{Ia} 17 yiel			tal		
Iwamoto et al. (1999)	[1.38]				
Thielemann et al. (2003)	[1.374]	[0.02]			
Seitenzahl et al. (2013)	[1.40]	[0.02]			
AGB					
Karakas (2010)	$[1,\!6.5]$	[0.0001, 0.02]			
Ventura et al. (2013)	$[1,\!6.5]$	$[0.0001,\!0.02]$			
Pignatari et al. (2016)	$[1.65,\!5]$	$[0.01,\!0.02]$			
Karakas & Lugaro (2016)	$[1,\!8]$	$[0.001,\!0.03]$			
TNG ^b	[1, 7.5]	$[0.0001,\!0.02]$			
Hypernova					
Nomoto et al. (2013)	[20, 40]	[0.001, 0.05]	D		
			DU		

Galah science meeting

see also Chiaki Kobayashi's extensive work on this topic!

Galah science meeting

Simulation Physics in Gasoline2

GASOLINE2 smooth particle hydrodynamics

"modern" implementation of hydrodynamics, metal diffusion

Wadsley+2017, Keller+2014

gas cooling

via hydrogen, helium and various metal lines

gas heating

via Photoionisation (e.g. from the UV background)

Shen+2010, Haardt&Madau 2012

Stinson+2006

energetic feedback from young massive stars and supernovae

Stinson+2013

previously: chemical enrichment limited to Fe and O

 $M_{\rm ej} = 0.7682 \, M^{1.056}$,

 $M_{\rm Fe} = 2.802 \times 10^{-4} M^{1.864}$

 $M_{\rm O} = 4.586 \times 10^{-4} M^{2.721}$

Now: in principle 81 elements possible to trace!

Simulation Physics in Gasoline2

GASOLINE2 smooth particle hydrodynamics

"modern" implementation of hydrodynamics, metal diffusion

Wadsley+2017, Keller+2014

gas cooling

via hydrogen, helium and various metal lines

gas heating

via Photoionisation (e.g. from the UV background)

Shen+2010, Haardt&Madau 2012

Stinson+2006

energetic feedback from young massive stars and supernovae

Stinson+2013

previously: chemical enrichment limited to Fe and O

 $M_{\rm ej} = 0.7682 \, M^{1.056}$,

 $M_{\rm Fe} = 2.802 \times 10^{-4} M^{1.864}$

 $M_{\rm O} = 4.586 \times 10^{-4} M^{2.721}$

Now: in principle 81 elements possible to trace!

14

Differences in element distributions - MW mass

Differences in [α /Fe] vs. [Fe/H]

Buck+2021

Differences in [X/Fe] vs. [Fe/H] for X=O,C,Mg,Ca

Buck+2021

Differences in [X/Fe] vs. [Fe/H] for X=Si,Ti,Na,Al

Galah science meeting

Buck+2021

A flexibel chemical enrichment implementation for cosmological simulations: Great diversity in abundance tracks data publicly available at: https://tobibu.github.io/#sim data

Simple stellar population model assume mass ranges for CC-SN, AGB stars and SN la

22