The challenge of simultaneously matching the diversity of chemical abundance patterns in cosmo hydro simulations

Tobias Buck

tbuck@aip.de
Leibniz-Institut für Astrophysik Potsdam

Jan Rybizki,
Aura Obreja,
Andrea V. Macciò,
Melissa Ness,
Sven Buder,
Christoph Pfrommer,
Matthias Steinmetz

The challenge of simultaneously matching the diversity of chemical abundance patterns in cosmo hydro simulations

Tobias Buck

tbuck@aip.de
Leibniz-Institut für Astrophysik Potsdam

Jan Rybizki,
Aura Obreja,
Andrea V. Macciò,
Melissa Ness,
Sven Buder,
Christoph Pfrommer,
Matthias Steinmetz

Milky Way chemo-dynamics

see also
Grand+2018,
Kobayashi+2020,
Agertz+2021,
Renaud+2021 and Buck2020 for explanation of abundance tracks and of course all the great analytic models!

Milky Way chemo-dynamics

Galah $->30$ abundances Gaia $\rightarrow>$ precise kinematics

see also
Grand+2018, Kobayashi+2020, Agertz+2021, Renaud+2021 and Buck2020 for explanation of abundance tracks and of course all the great analytic models!

Milky Way chemo-dynamics

Spectra with flag_X_fe $=0^{10^{2}}$

Galah $->30$ abundances Gaia $\rightarrow>$ precise kinematics

What do these patterns tell us about Milky Way's formation history?

Formation of the bimodality in [$\alpha / \mathrm{Fe}]$ vs. [$\mathrm{Fe} / \mathrm{H}]$ in analytic models

Formation of a simulated MW analogue

Formation of a simulated MW analogue

Formation of the bimodality in $[\alpha / \mathrm{Fe}]$ vs. $[\mathrm{Fe} / \mathrm{H}]$

Formation of the bimodality in $[\alpha / \mathrm{Fe}]$ vs. $[\mathrm{Fe} / \mathrm{H}]$

Aim:

Modify our cosmological numerical codes to keep up with the data quality and quantity of spectroscopic surveys

Star particles in cosmological simulations

Star particles in cosmological simulations

Simple stellar population

mass, metallicity, age

Simple stellar population

mass, metallicity, age

Simple stellar population

mass, metallicity, age

Chemical composition of mass return

nucleosynthetic yield tables for element production inside stars

Importance of tracing a large set of elements

Time release of newly produced elements

Time release of newly produced elements

Simulation Physics in Gasoline2

©

GASOLINE2

 smooth particle hydrodynamics"modern" implementation of hydrodynamics, metal diffusion

Wadsley+2017, Keller+2014

2
gas cooling
via hydrogen, helium and various metal lines
gas heating
via Photoionisation (e.g. from the UV background)

3
self consistent star formation from cold, dense gas

star formation regions

$z=-0.00$

image size: 50x50 kpc Animation by T. Buck (MPIA, NYUAD) based on NIHAO simulations \quad BuCK+2019a
energetic feedback from young massive stars and supernovae
previously: chemical enrichment
limited to Fe and O
$M_{\mathrm{ej}}=0.7682 M^{1.056}$,
$M_{\mathrm{Fe}}=2.802 \times 10^{-4} M^{1.864}$
$M_{\mathrm{O}}=4.586 \times 10^{-4} M^{2.721}$
Raiteri+1996

Now: in principle 81 elements possible to trace!

Simulation Physics in Gasoline2

©

GASOLINE2

 smooth particle hydrodynamics"modern" implementation of hydrodynamics, metal diffusion

Wadsley+2017, Keller+2014

2
gas cooling
via hydrogen, helium and various metal lines
gas heating
via Photoionisation (e.g. from the UV background)

3
self consistent star formation from cold, dense gas

star formation regions

$z=-0.00$

image size: 50x50 kpc Animation by T. Buck (MPIA, NYUAD) based on NIHAO simulations \quad BuCK+2019a
energetic feedback from young massive stars and supernovae
previously: chemical enrichment
limited to Fe and O
$M_{\mathrm{ej}}=0.7682 M^{1.056}$,
$M_{\mathrm{Fe}}=2.802 \times 10^{-4} M^{1.864}$
$M_{\mathrm{O}}=4.586 \times 10^{-4} M^{2.721}$
Raiteri+1996

Now: in principle 81 elements possible to trace!

Results: mass metallicity relation unchanged

Differences in element distributions - MW mass

Differences in $[\alpha / \mathrm{Fe}]$ vs. $[\mathrm{Fe} / \mathrm{H}]$

Buck+2021

Differences in [X/Fe] vs. [Fe/H] for X=O,C,Mg,Ca

Buck+2021

Differences in [X/Fe] vs. [Fe/H] for $\mathrm{X}=\mathrm{Si}, \mathrm{Ti}, \mathrm{Na}, \mathrm{Al}$

A flexpel hemical enrich heetimplementation great potential/ or MW chemo-ci ha.inics What eliveraits in abundane treal
htt s://tobibu.qithul .io/\#sin uata

Simple stellar population model

 assume mass ranges for CC-SN, AGB stars and SN la here the number of SN la follows empirical delay time distribution

Star formation history

Buck subm.

