Tracing the formation history of simulated MW analogues with stellar population kinematics

Tobias Buck

tbuck@aip.de

Leibniz-Institut für Astrophysik Potsdam

> Federico Sestito, Else Starkenburg, Nicolas Martin, **Christoph Pfrommer** Aura Obreja, Andrea V. Macciò, Aaron A. Dutton, Hans-Walter Rix, Melissa Ness

Tracing the formation history of simulated MW analogues with stellar population kinematics

Tobias Buck

tbuck@aip.de

Leibniz-Institut für Astrophysik Potsdam

> Federico Sestito, Else Starkenburg, Nicolas Martin, **Christoph Pfrommer** Aura Obreja, Andrea V. Macciò, Aaron A. Dutton, Hans-Walter Rix, Melissa Ness

dwarf galaxy population

~1 000 000 lyr —

How did the Milky Way form?

~1 000 000 lyr

What can we learn about **Cosmology from the Milky Way?**

How did the Milky Way form?

~1 000 000 lyr

A galaxy formation model

A galaxy formation model

Simulation Physics

GASOLINE2.1 smooth particle hydrodynamics

"modern" implementation of hydrodynamics, metal diffusion

Wadsley+2017, Keller+2014

2 gas cooling via hydrogen, helium and various metal lines

gas heating via Photoionisation (e.g. from the UV background)

Shen+2010, Haardt&Madau 2012

3 self consistent star formation from cold, dense gas + stellar evolution

Stinson+2006

Simulation Physics

GASOLINE2.1 smooth particle hydrodynamics

"modern" implementation of hydrodynamics, metal diffusion

Wadsley+2017, Keller+2014

2 gas cooling via hydrogen, helium and various metal lines

gas heating via Photoionisation (e.g. from the UV background)

Shen+2010, Haardt&Madau 2012

3 self consistent star formation from cold, dense gas + stellar evolution

Stinson+2006

Milky Way mass simulations

similar projects: Wetzel+2016, Sawala+2016, Grand+2017

Linking the galactic and extragalactic

Tobias Buck

halo masses: 5 x 10¹¹ to 2.8 x 10¹² M ~ 3x10⁷ resolution elements

dark matter: 400 pc, $1.5 \times 10^5 M_{\odot}$

Results look pretty realistic!

How did the Milky Way form? Study a model galaxy!

dwarf galaxy population

see also: Sawala+2015, Simpson+2017, Despali&Vegetti 2017

see also: Sawala+2015, Simpson+2017, Despali&Vegetti 2017

Satellite destruction and dark sub-halos

see also: Sawala+2015, Simpson+2017, Despali&Vegetti 2017

10

Realistic galactic environments are key to interpret galactic disc structures

awan galaxy population

Mass selected disc galaxies with different formation scenarios

Tobias Buck

 \sim

2)

Age-velocity dispersion relation

Linking the galactic and extragalactic

14

Bimodality in [α /Fe] vs. [Fe/H] plane

Metal-poor stars trace the early formation of the Milky Way

17

of the Milky Way

Tobias Buck

Stellar disc structures encode valuable information about galactic formation paths

MW bulge: morphology and kinematics

Buck+2018a, Buck+2019b for bulge kinematics / Hilmi, Minchev, Buck+2020 for careful tests of methods to derive bar length and pattern speed Linking the galactic and extragalactic

Tobias Buck

Different formation scenarios for disc and bulge

Obreja+(incl. Buck)2018

Bulge and disc follow separate formation paths

How did the Milky Way form?

dwarf galaxy population

 complex formation pattern (Buck et al. 2019a, Buck et al. 2020) • chemical bimodality (Buck 2020)

 complex formation pattern (Buck et al. 2019a, Buck et al. 2020) • chemical bimodality (Buck 2020)

the bulge

 morphology and kinematics reproduced (Buck et al. 2018a, Buck et al. 2019b, Hilmi et al. 2020) encodes cosmological formation

path (Obreja et al. 2018)

 complex formation pattern (Buck et al. 2019a, Buck et al. 2020) • chemical bimodality (Buck 2020)

the bulge

 morphology and kinematics reproduced (Buck et al. 2018a, Buck et al. 2019b, Hilmi et al. 2020) encodes cosmological formation

path (Obreja et al. 2018)

How did the Milky Way form?

- realistic dwarf galaxy population (Buck et al. 2019c, Buck et al. 2016)
- accretion events imprinted in disc

structure (Buck 2020, Sestito et al. 2020)

dwarf galaxy population

 complex formation pattern (Buck et al. 2019a, Buck et al. 2020) • chemical bimodality (Buck 2020)

 early disc morphology (Buck et al. 2017) disc structure evolution (Buck et al. 2020)

The early stellar disc

the bulge

 morphology and kinematics reproduced (Buck et al. 2018a, Buck et al. 2019b, Hilmi et al. 2020) encodes cosmological formation

path (Obreja et al. 2018)

How did the Milky Way form?

- realistic dwarf galaxy population (Buck et al. 2019c, Buck et al. 2016)
- accretion events imprinted in disc structure (Buck 2020, Sestito et al. 2020)

dwarf galaxy population

Linking the Galactic and **Extragalactic via realistic simulations** can help unravel

