Formation of Milky Way-like galaxies in cosmological context Facts, Fiction and Future Challenges

Tobias Buck

Leibniz-Institut für Astrophysik Potsdam

American Museum of Natural History Astro colloquium, 1st of March 2022 somewhere in cyber space tbuck@aip.de

Christoph Pfrommer, Aura Obreja, Melissa Ness, Lucy Lu, Ivan Minchev, Andrea Macciò, Aaron Dutton, Hans-Walter Rix. Rüdiger Pakmor, Robert Grand, Volker Springel, et al.

THE STRUCTURE OF THE NEXT ~ 40 MINUTES:

- Some selective (personally biased) observational Facts about the Milky Way
- Simulated Fiction about Milky-Way's formation history
- Future Challenges: How to build better models?

THE STRUCTURE OF THE NEXT ~ 40 MINUTES:

- Observational Facts about the Milky Way: Buder, Yuxi, Eilers, Sestito? chemical bimodality..., Obreja 2022
- Simulated Fiction about Milky-Way's formation history: all my own work... NIHAO-UHD and results, Buck+2019 SF threshold, Buck+2020 impact of CRs, Buck+2021 new elements
- Future Challenges: How to build better models? statistical model of density structures, Al for simulations, junior group

the stellar disc

the bulge

dwarf galaxy population

d~200 000 lyr

~1 000 000 lyr

CAUSAL GENERATIVE MODELS IN ASTRONOMY

MILKY WAY SURVEYS

Gaia

4MOST

MAIN UAIA PKUUUUI: $\sim 10'$ SIELLAK SPEUIKA

TOBIAS BUCK

SDSS-V

HOW MUCH OF MW'S STELLAR DISK DO WE ACTUALLY RESOLVE RIGHT NOW?

[Fe/H] [dex]

0.5

Galah survey footprint

MILKY WAY AS A RESOLVED MODEL GALAXY:

Galactic Genesis

Sun

 10^{3}

- Milky Way's formation history is encoded in its structure
- Stellar properties like age and chemical composition correlate with stellar orbits
- Stellar orbits in turn are set by global properties like gravitational potential (dark matter, gas and stars), size and shape
- Need to understand Milky Way in cosmological context

MW BULGE: MORPHOLOGY AND KINEMATICS – ONGOING DISCUSSIONS

Buck+2018a, Buck+2019b, Hilmi, Minchev, Buck+2020

TOBIAS BUCK

MILKY WAY'S AGE-ABUNDANCE STRUCTURE FROM STELLAR SPECTRA

Solar Neighborhood

MILKY WAY'S AGE-ABUNDANCE STRUCTURE FROM STELLAR SPECTRA

Bovy et al. 2019,

R [kpc] see also: Nidever et al. 2014, Hayden et al. 2015, Martig et al. 2016, Ness et al. 2016, 2019, Bensby et al. 2017 Mackereth et al. 2019,

MILKY WAY'S AGE-ABUNDANCE STRUCTURE FROM STELLAR SPECTRA

FORMATION OF MILKY WAY-LIKE GALAXIES IN COSMOLOGICAL CONTEXT **TURNING POINTS IN THE AGE-METALLICITY RELATION**

TOBIAS BUCK

FORMATION OF MILKY WAY-LIKE GALAXIES IN COSMOLOGICAL CONTEXT **TURNING POINTS IN THE AGE-METALLICITY RELATION**

TOBIAS BUCK

2	0	1	9	

- 0-2 kpc 2-4 kpc
- 4-6 kpc
- 6-8 kpc
 - 8-10 kpc
 - 10-12 kpc
 - 12-14 kpc
 - AMR for 7 kpc
 - $|z| < 0.5 \, kpc$

see e.g. Ratcliffe+2021 for the possibility to infer birth radii for MW stars

MOVIE TIME: COSMOLOGICAL FORMATION SCENARIO FOR THE MW Satellite population properties: see Buck+2015,2016 and Buck+2019b

Animation by T. Buck (MPIA, NYUAD) based on NIHAO simulations

Animation by T. Buck (MPIA, NYUAD) based on NIHAO simulations

MW'S DARK MATTER HALO SPIN

Obreja+2018 for GMM

AKA SIMULATIONS

A GALAXY FORMATION MODEL IN A NUTSHELL

37.5 kpc

FORMATION OF MILKY WAY-LIKE GALAXIES IN COSMOLOGICAL CONTEXT **BASICS OF NUMERICAL** G' dark matter-only (N-body) zoom (details) ~95% of the energy content of the Universe volume (statistics) large

Vogelsberger+2019

dark matter + baryons (hydrodynamical)

FORMATION OF MILKY WAY-LIKE GALAXIES IN COSMOLOGICAL CONTEXT ZOOM SIMS VS. VOLUME SIMS

- zoom-in, "single object" sim
- mass resolution: stars $\sim 10^4 M_{\odot}$

- Large scale uniform box
- mass resolution: stars ~10⁶ M_{\odot}

SIMULATED ASTROPHYSICAL PROCESSES

gas cooling	inter- stellar medium	star formation	stellar feedback	super- massive black holes	active galactic nuclei	magnetic fields	radiation fields	cos ra
atomic/ molecular/ metals/ tabulated/ network	effective equation of state/ multi- phase	initial stellar mass function/ probabilistic sampling/ enrichment	kinetic/ thermal/ variety of sources from stars, supernovae	numerical seeding/ growth by accretion prescription/ merging	kinetic/ thermal/ radiative/ quasar mode/ radio mode	ideal MHD/ cleaning schemes/ constrained transport	ray tracing/ Monte Carlo/ moment- based	produ hea aniso diffu strea

> At the same time: bridging 10⁶ orders of magnitude in spatial scale from sizes of stars to entire galaxies and beyond

most important astrophysical processes

MOST MECHANISM PUT IN BY HAND IN A PARAMETRISED WAY.

cosmological zoom-in hydro simulations of a Milky Way analogue

NIHAO project - NYUAD / MPIA

NIHAO-UHD **BUCK ET AL. 2020**

STAR PARTICLES IN COSMOLOGICAL SIMULATIONS

FORMATION OF MILKY WAY-LIKE GALAXIES IN COSMOLOGI **SIMPLE STELLAR POPULATION** mass, metallicity, age

Group meeting Lund

DIFFERENCE IN CHEMICAL ABUNDANCES DUE TO MODEL UNCERTAINTIES

 $\log \left(M_{\rm star} / M_{\odot} \right)$

GALAXY MORPHOLOGY DEPENDS ON THE EXACT PHYSICS IMPLEMENTATION! Auriga

well ordered spiral structure

TOBIAS BUCK

Arepo moving-mesh

Grand+2017

THE IMPACT OF GAS COOLING AND HEATING PHYSICS ON GALAXY MORPHOLOGY

g7.08e

TOBIAS BUCK

g7.55e

Arepo effective equation of state

Arepo multiphase ISM

> Gasoline2 multiphase ISM

Buck+2020b

FORMATION OF MILKY WAY-LIKE GALAXIES IN COSMOLOGICAL CONTEXT THE IMPACT OF CR PHYSICS ON GALAXY MORPHOLOGY

4 different models for CR transport

TOBIAS BUCK

HOW TO DISTINGUISH MODELS? —> CAREFUL COMPARISON TO OBSERVATIONS! Two-point correlation function of young stars

HOW TO DISTINGUISH MODELS? —> CAREFUL COMPARISON TO OBSERVATIONS!

Two-point correlation function of young stars

For a more fancy ML

HOW TO CONNECT PRESENT AND PAST? FINDING ACCRETED STARS IN THE MILKY WAY Chemical Chemical & Dynamical Dynamical [b)] (c) Buder+2022 $|a\rangle$ 1.00 -0.75 $[\mathrm{Mg/Mn}]$ 0.500.250.00-0.25-0.50.50.5-0.50.00.50.0-0.50.0[Na/Fe][Na/Fe] [Na/Fe] (f) (d) (e) 60 -Feuillet+ (2021)50 $\rm kpc\,km\,s^-$ 3020 · $10 \cdot$ 2000200020000 $L_Z~/~{\rm kpc\,km\,s^{-1}}$ $L_Z\ /\ \rm kpc\,km\,s^{-1}$

see also: Helmi+2018, Belokurov+2018, and many more

GALAXY FORMATION IS A DATA INTENSIVE, MULTI-SCALE PROBLEM

HOW CAN WE BUILT PREDICTIVE MULTI-SCALE **MODELS FOR GALAXIES?**

 $\dot{z}_i = g(\vec{z}, p)$

Χ

TOBIAS BUCK

Wavelen

CAUSAL GENERATIVE MODELS IN ASTRONOMY

EXTRAGALACTIC SURVEYS

Nan

Spa

European Extremely Large Telescope

$\mathbf{P}_{\mathbf{A}} = \mathbf{P}_{\mathbf{A}} =$ \sim 30 TERABYTES PER NIGHT — > HOW TO PROPERLY ANALYSE ALL THE DATA?

TOBIAS BUCK

HOW CAN WE BUILT PREDICTIVE MULTI-SCALE MODELS?

- Imits for models will always be the computational power
- need smart algorithms!
- combine physical laws with the flexibility of modern machine learning!
- In August I will start a junior research group on physics informed Machine Learning!
- You have ML experience and are looking for an interdisciplinary PhD or a Postdoc position: Get in contact with me!

SUMMARY AND CONCLUSION

- Iarge spectroscopic surveys in combination with state-of-the-art numerical simulations unravel MW's formation history
- simulations inform about MW's past and observations inform about numerical limitations of the models
- computational power is always a limit for the physical fidelity of our models
 - need a diversity of algorithms and implementations to cross-compare
 - need smart, innovative approaches. Data driven and AI/ML models can help

OBSERVATIONS: SPECTROSCOPY VS. PHOTOMETRY

Spectroscopy

Photometry

TOBIAS BUCK

CAUSAL GENERATIVE:

EXTRACTING GAL

- Can we recons from their ima
- Can we build a band images?

derive maps of physical parameters

THE IDEA: RECONSTRUCTING GALAXY MODELS FROM IMAGES

Input Image(s)

model parameters describing object shape, composition, dynamical state, luminosity, etc. and camera position

TOBIAS BUCK

idea credit: Bernhard Schölkopf based on face reconstruction by Tewari+2017

How to measure the length of MW's central stellar bar? -0.9 - 0.6 - 0.3 0.0 0.3 0.6 0.9

AIP Colloquium

45

QUANTIFYING MILKY WAY'S SPIRAL STRUCTURE FROM STELLAR SPECTRA Model Data

