

TOBIAS BUCK & STEFFEN WOLF

PAINTING NTRINSIC ATTRIBUTES ONTO SDSS OBJECTS

VIRTUAL ANNUAL MEETING OF THE GERMAN ASTRONOMICAL SOCIETY, 23. SEPTEMBER 2020 LEIBNIZ-INSTITUT FÜR ASTROPHYSIK POTSDAM (AIP), tbuck@aip.de

Visage dans étoile, Pablo Picasso (1947)

derive physical parameters

FULL FORWARD MODELLING: HYDRO SIMS simulation

FULL FORWARD MODELLING: HYDRO SIMS simulation observation

FULL FORWARD MODELLING: HYDRO SIMS simulation observation

NGC 2403 — Gas and Stars

NOT FEASIBLE!

MODEL UNCERTAINTIES. TOO LOW SAMPLE SIZES, YOU'LL NEVER FIND **A CLOSE MATCH TO AN OBSERVED GALAXY**

OBSERVATIONS

CLASSIC SDSS ~100.000 GALAXIES

CLASSIC SDSS ~100.000 GALAXIES

CLASSIC SDSS ~100.000 GALAXIES

SDSS MANGA ~10.000 GALAXIES EXPENSIVE INTEGRAL FIELD SPECTROSCOPY OTHER EXAMPLES: SAMI, CALIFA, FORNAX3D, ETC.

LARGE SCALE SURVEYS: CHALLENGE FOR **CONVENTIONAL ANALYSIS / MODELLING**

PHOTOMETRIC DATA FOR MILLIONS OF GALAXIES. (EUCLID, LSST, DES, COSMOS, DEEP2, BUT ALSO LEGACY DATA LIKE SDSS)

FEASIBLE

RESOLVED GALAXY PROPERTIES

CLASSICAL ANALYSIS/CLASSIFICATION (VISUAL OR GALAXY ZOO LIKE) NOT

DATA EXPLORATION BEYOND (SIMPLE) MORPHOLOGICAL CLASSIFICATION

HOW MUCH INFORMATION **SENCODED IN BROAD** BAND GALAXY INAGES?

CAN WE BUILD AN ANALYSIS TOOL WHICH:

• WORKS ON LARGE PHOTOMETRIC DATA SETS A. FAST

IS EASY TO HANDLEC.AUTOMATIOND.GENERALIZATION

➡ FAST, OFF-THE-SHELF TOOL, READY TO USE

MOTIVATION/ROAD MAP

- surveys
- Which properties can we recover? Can we do kinematics?
- machine reconstructs galaxies?
- Can we make the model physically interpretable?

How can we incorporate such models in future pipelines? —> Sampling from latent space to create close analogues to observed galaxies

Proof-of-concept: Does multi-band photometry contain enough information to recover resolved maps of intrinsic properties —> Knowledge transfer from IFU

What do we learn about galaxies? —> Inspect the latent space. How does the

MOTIVATION/ROAD MAP

- surveys
- Which properties can we recover? Can we do kinematics?
- machine reconstructs galaxies?
- Can we make the model physically interpretable?
- How can we incorporate such models in future pipelines?

Proof-of-concept: Does multi-band photometry contain enough information to recover resolved maps of intrinsic properties —> Knowledge transfer from IFU

What do we learn about galaxies? —> Inspect the latent space. How does the

—> Sampling from latent space to create close analogues to observed galaxies

PHOTOMETRY TO PHYSICAL PROPERTIES

METHOD: DEEP LEARNING

SIMILAR APPLICATIONS Output Input Input

Input

Output

Output

horse \rightarrow zebra

 $zebra \rightarrow horse$

SIMILAR APPLICATIONS Output Output Input

Input

Input

Share a common Architecture: UNet (Ronneberger+2015)

Output

apple \rightarrow orange

orange \rightarrow apple

WHAT IS DIFFERENT WHEN PREDICTING PHYSICAL PROPERTIES • Almost all CNNs are classifiers: $Y \in \{0, 1\}^N$ • Here $Y \in \mathbb{R}^N$ with multiple orders of

- magnitude
- 1. Predict log(Y)

Bins
$$B = \{-14, -12, ..., 0, 2\}$$

quantiles $q \in [0, 1]$
residuals $r \in [0, 1]$
 $B = 1$
 $r \in [0, 1]$

2. Quantized Regression [Güler et al. CVPR 2017]

$$\int_{\Theta} f(x) = \sum_{i=0}^{|B|-2} q_i \left(B_i + r_i \left(B_{i+1} - B_i \right) \right)$$

PROOF OF CONCEPT: ILLUSTRIS DATA

PROOF OF CONCEPT: ILLUSTRIS DATA

g-band

SDSS MOCK IMAGES 256X256 PIXELS TORREY+2014, SNYDER+2015 RADIATIVE TRANSFER, BACKGROUND STARS, PSF, NOISE, **SURFACE BRIGHTNESS CUT** PHYSICAL PROPERTIES ON SAME SCALE

u-band

HI abundance

r-band

i-band

Zgas

Z star

Stellar mass

z-band

RESULTS

COMPARING TRUE AND PREDICTED SFR -100TH QUANT.

COMPARING TRUE AND PREDICTED SFR -70Th quant.

COMPARING TRUE AND PREDICTED SFR -40th quant.

Truth

RADIAL SYSTEMATICS?

log M pred 0.4 0.2 0.0 og Mtrue -0.2 0.4

2 R/R_{half}

2.5 0.5

RADIAL SYSTEMATICS?

log M pred gas 0.4 0.2 0.0 end Base -0.2 0.4

2.5 2.0 1.5 10 10 0.5

SUMMARY

SDSS (MOCK) *U,G,R,I,Z* IMAGES CONTAIN ENOUGH INFORMATION TO *PREDICT* PHYSICAL PROPERTIES OF GALAXIES ON A *PIXEL-BY-PIXEL* BASIS

NEXT STEPS: REAL LIFE APPLICATION USE **PICASSSO** ON REAL SDSS IMAGES WITH SDSS MANGA, SAMI, OR CALIFA AS TRAININGS SAMPLE

IEXT STEPS: **PROOF-OF-CONCEPT WORKS QUANTIFY WHAT IS LEARNED: MORPHOLOGY OR COLOR? QUANTIFY DEPENDENCE ON:** IMAGE RESOLUTION (STABLE AGAINST FACTOR 2/4 LOWER RES) TRAINING SET SIZE NUMBER OF INPUT BANDS REAL LIFE APPLICATION: IFU SURVEY DATA (E.G. MANGA) **RELEASE IT AS READY-TO-USE TOOL?**